EQUIPO ¿Qué determina las propiedades de los compuestos del carbono? Enlaces del Carbono
1
Los enlaces del carbono con el hidrógeno (C-H), también son enlaces de tipo covalente, siendo éstos sumamente abundantes entre los compuestos orgánicos. Estos enlaces junto a los enlaces C-C, forman los conocidos hidrocarburos, dividiéndose éstos en alcanos, alquenos, alquinos e hidrocarburos aromáticos.
Los enlaces simples son de tipo sigma (enlace σ), siendo este el más fuerte de los enlaces covalentes, y se encuentran formados por un orbital híbrido de los átomos de carbono del enlace.
Los átomos de carbono al enlazarse también pueden formar enlaces dobles (alquenos), formados por orbitales híbridos sp^2 y dos p.
En cambio los enlaces triples (alquinos), formados por un orbital híbrido sp y dos p de cada uno de los átomos.
2 Los compuestos de carbono no tienen un carácter iónico; por ello, los enlaces tienen un marcado carácter covalente.
Los enlaces covalentes son enlaces bastante fuertes y difíciles de romper. Por este motivo, las reacciones en las que intervienen compuestos de carbono son, en general, lentas; y a menudo necesitan la presencia de catalizadores para que la reacción se produzca a un ritmo apreciable (y en muchos casos, elevadas temperaturas.)
Otra propiedad importantísima desde el punto de vista práctico es la capacidad energética de los hidrocarburos.
Estructura electrónica del carbono
Al átomo de carbono con número atómico 6 le corresponde la configuración electrónica:
1 s 2 2 s 2 2 p 2
Siguiendo el principio de máxima multiplicidad de Hund podemos representar la configuración como:
1s 2s 2p
esta configuración justifica una covalencia 2 para el carbono. A pesar de esto, el carbono sólo presenta la covalencia 2 en el monóxido de carbono y en un grupo de compuestos conocidos como isonitrilos.
El carbono, de ordinario, presenta covalencia 4, y ello no es explicable por la configuración que presenta en estado normal. De hecho, lo que sucede es que al formarse los enlaces, uno de los dos electrones 2s capta energía y es promocionado al orbital 2pz en el subnivel 2p.
1s 2s 2p
px py pz
átomo de carbono en estado normal
Energía
1s 2s 2p
px py pz
átomo de carbono en estado excitado
Este tipo de hibridación se da en los casos de formación de doble enlace: carbono-carbono, por ejemplo, en la molécula de etileno: .
El átomo de carbono aún puede sufrir otro tipo de hibridación, la hibridación digonal sp. Como indica su nombre, en ella intervienen un orbital s (el 2s) y otro p (el 2py). En esta ocasión los orbitales híbridos se disponen alineados formando ángulos de 180°, y dirigidos según el eje OY. Los orbitales 2px y 2pz que no intervienen en la hibridación conservan su forma y posición.
hibridación
Este tipo de hibridación se da en los casos de formación de triple enlace: carbono-carbono, por ejemplo, en la molécula de acetileno: . En el triple enlace carbono-carbono, uno de los enlaces es un enlace (2sp-2sp) y los otros dos son enlaces (2px-2px y 2pz-2pz).
El enlace triple es aún más reactivo que el doble enlace debido a la presencia de los dos enlaces .
3 El átomo de carbono, debido a su configuración electrónica, presenta una importante capacidad de combinación. Los átomos de carbono pueden unirse entre sí formando estructuras complejas y enlazarse a átomos o grupos de átomos que confieren a las moléculas resultantes propiedades específicas. Parece ser que no hay límites al número de estructuras diferentes que el carbono puede formar. Para añadirle complejidad a la química orgánica, átomos de carbono vecinos pueden formar enlaces dobles o triples adicionalmente a los enlaces de carbono-carbono:
Enlace sencillo Enlace doble Enlace triple
4 Los compuestos de carbono no tienen un carácter iónico; por ello, los enlaces tienen un marcado carácter covalente.
Los enlaces covalentes son enlaces bastante fuertes y difíciles de romper. Por este motivo, las reacciones en las que intervienen compuestos de carbono son, en general, lentas; y a menudo necesitan la presencia de catalizadores para que la reacción se produzca a un ritmo apreciable (y en muchos casos, elevadas temperaturas.)
Otra propiedad importantísima desde el punto de vista práctico es la capacidad energética de los hidrocarburos. En las reacciones de combustión se genera una gran cantidad de energía. Como productos de desecho se obtiene siempre dióxido de carbono y agua. Observa algunas reacciones:
• Metano: CH4 + 2 O2 ⇒ CO2 + 2 H2O + energía
• Etano: 2 C2H6 + 7 O2 ⇒ 4 CO2 + 6 H2O + energía
• Butano: 2 C4H10 + 13 O2 ⇒ 8 CO2 + 10 H2O + energía
El gas natural o el petróleo, por ejemplo, están formados por una mezcla de hidrocarburos.
Un enlace carbono-carbono es un enlace covalente entre dos átomos de carbono.1 La forma más común es el enlace simple - un enlace compuesto por dos electrones, uno de cada uno de los dos átomos. El enlace simple carbono-carbono es un enlace sigma y se forma entre un orbital híbrido de cada uno de los átomos de carbono. En el etano, los orbitales son sp3, pero también pueden existir enlaces simples formados por átomos de carbono con otras hibridaciones (por ejemplo, sp2 a sp2). En efecto, los átomos de carbono en el enlace simple no necesitan ser de la misma hibridación. Los átomos de carbono también pueden formar enlace doble, constituyendo alquenos, o enlace triple, en alquinos. Un enlace doble está formado con un orbital híbrido sp2 y un orbital p que no está involucrado en la hibridación. Un enlace triple está formado con un orbital híbrido sp y dos orbitales p de cada átomo.
5 Más aún, presenta una gran afinidad para enlazarse químicamente con otros átomos pequeños, incluyendo otros átomos de carbono con los que puede formar largas cadenas, y su pequeño radio atómico le permite formar enlaces múltiples. Un enlace carbono-carbono es un enlace covalente entre dos átomos de carbono.1 La forma más común es el enlace simple - un enlace compuesto por dos electrones, uno de cada uno de los dos átomos.
6 El carbono tiene propiedades químicas que lo hacen muy importante para los seres vivos. Por ejemplo, puede unir sus átomos para formar largas cadenas que, a su vez, son los componentes básicos de las sustancias orgánicas, como el caso de las proteínas, las grasas y los azúcares. El carbono es tan importante que hay una rama de la química que se encarga de estudiar los compuestos de cadenas largas y cortas que forma este elemento: la química orgánica. Todas las biomoléculas se basan en los átomos de carbono para formar su estructura.
Al átomo de carbono con número atómico 6 le corresponde la configuración electrónica:
1 s 2 2 s 2 2 p 2
El carbono, de ordinario, presenta covalencia 4, y ello no es explicable por la configuración que presenta en estado normal. De hecho, lo que sucede es que al formarse los enlaces, uno de los dos electrones 2s capta energía y es promocionado al orbital 2pz en el subnivel 2p.
ACTIVIDAD MODELOS MOLECULARES DE LOS COMPUESTOS DEL CARBONO♥
Enlace sencillo Enlace doble Enlace triple Metanol
Material: Modelos moleculares de plástico.
Procedimiento:
-Cada equipo formará el modelo molecular del metano, etano, propano, butano y pentano.
-Formaran los derivados de la familia de los alquenos, alquinos y alcoholes.
Compuesto Modelo escrito Modelo esquemático Modelo físicoMetano Tiene un carbono y 4 Hidrógenos
Etano Tiene dos carbonos y 6 Hidrógenos
Propano Tiene 3 carbonos y 8 Hidrógenos.
Butano Tiene cuatro carbonos y 10 Hidrógenos.
Pentano Tiene cinco carbonos y 12 Hidrógenos.
Eteno Tiene dos carbonos y 4 Hidrógenos y un doble enlace.
Propeno Tiene tres carbonos y 6 Hidrógenos y un doble enlace.
buteno Tiene 4 carbonos y 8 Hidrógenos y un doble enlace.
penteno Tiene 5 carbonos y 10 hidrogenos un doble enlace
etino Tiene 2 carbonos y 2 hidrogenos y un enlace triple
Propino Tiene 3 carbonos y 4 hidrogenos y un enlace triple
Butino Tiene 4 carbonos y 5 hidrogenos y un enlace triple
pentino Tiene 5 carbonos y 8 hidrogenos y un enlace triple
Metanol Tiene 1 carbono 4 hidrógenos y 1 oxígeno
etanol 2 carbonos 1oxígeno
6 hidrogenos
propanol 3 carbonos 8 hidrogenos 1 oxigeno
butanol 4 carbonos 10 hidrogenos 1 oxigeno
pentanol 5 carbonos
6 hidrogenos 1oxígeno CH3CH2CH2CH2CH2OH
RECAPITULACION 11
El día martes realizamos un experimento con alcohol, acetona, ácido sulfúrico, entre otros, viendo su fórmula, color, olor y textura. Después al hacer una mezcla de alcohol, ácido sulfúrico y acético y ponerlo en ebullición vimos su cambio de olor.
El día jueves cada equipo pasó a escribir sobre el carbono y sus derivados de él, como los alcanos (etano, butano, metano, etc.) entre otros. Viendo el contenido de hidrógenos, carbonos y oxígenos. También hicimos modelos físicos de alcanos, alquenos, alquinos y alcoholes.
INDAGACIONES
Esterificación: Se denomina esterificación al proceso por el cual se sintetiza un éster. Un éster es un compuesto derivado formalmente de la reacción química entre un ácido carboxílico y un alcohol.
Comúnmente cuando se habla de ésteres se hace alusión a los ésteres de ácidos carboxílicos, substancias cuya estructura es R-COOR', donde R y R' son grupos alquilo. Sin embargo, se pueden formar en principio ésteres de prácticamente todos los oxácidos inorgánicos
Alquenos
Los alquenos son hidrocarburos que tienen un doble enlace carbono = carbono (C=C) en su estructura.
Nomenclatura de los Alquenos:
* La cadena principal es la que tiene mayor número de dobles enlaces.
* Se empiezan a contar los localizadores de forma que el número que asignemos al enlace sea el menor.
* Se nombran igual que los alcanos sustituyendo el sufijo -ano por -eno indicando el localizador del doble enlace.
Las amidas son compuestos que se pueden considerar derivados de los ácidos al sustituir su grupo -OH por el grupo -NH2. La característica fundamental de las amidas es la unión del nítrógeno al carbono del grupo carbonilo en sustitución del grupo -OH del ácido.
Las amidas se clasifican como pimarias (RCONH2), secundarias (RCONHCOR) y terciarias (RCONCORCOR).
Una cetona es un compuesto orgánico caracterizado por poseer un grupo funcional carbonilo.[1] Cuando el grupo funcional carbonilo es el de mayor relevancia en dicho compuesto orgánico, las cetonas se nombran agregando el sufijo -ona al hidrocarburo del cual provienen (hexano, hexanona; heptano, heptanona; etc). También se puede nombrar posponiendo cetona a los radicales a los cuales está unido (por ejemplo: metilfenil cetona). Cuando el grupo carbonilo no es el grupo prioritario, se utiliza el prefijo oxo- (ejemplo: 2-oxopropanal).
Los alquinos se nombran sustituyendo la terminación -ano del alcano por -ino. El alquino más pequeño es el etino o acetileno. Se elige como cadena principal la más larga que contenga el triple enlace y se numera de modo que este tome el localizador más bajo posible.
Estructura y enlace en alquinos
El triple enlace está compuesto por dos enlaces π perpendiculares entre si, formados por orbitales p no hibridados y un enlace sigma formado por hibridos sp.
IMAGENES DE EXPERIMENTO**
Semana 11.Martes 206 B.
Equipo | ¿Qué determina las propiedades de los compuestos del carbono? | Enlaces del Carbono |
1 | Propiedades químicas Los compuestos de carbono no tienen un carácter iónico; por ello, los enlaces tienen un marcado carácter covalente. Los enlaces covalentes son enlaces bastante fuertes y difíciles de romper. Por este motivo, las reacciones en las que intervienen compuestos de carbono son, en general, lentas; y a menudo necesitan la presencia de catalizadores para que la reacción se produzca a un ritmo apreciable (y en muchos casos, elevadas temperaturas.) Otra propiedad importantísima desde el punto de vista práctico es la capacidad energética de los hidrocarburos. En las reacciones de combustión se genera una gran cantidad de energía. Como productos de desecho se obtiene siempre dióxido de carbono y agua. Observa algunas reacciones:
El gas natural o el petróleo, por ejemplo, están formados por una mezcla de hidrocarburos. | Los electrones de valencia del carbono pueden alojarse en orbitales s y p que en determinados compuestos pueden formar orbitales híbridos. Es decir, los átomos de carbono pueden alojar sus electrones de valencia en orbitales diferentes de los que se usan cuando no se enlazan. Estos nuevos orbitales se denominan orbitales híbridos. Según el compuesto, un átomo de carbono puede tener: - Cuatro orbitales híbridos formados por el orbital s y los tres p. Estos orbitales se denominan orbitales sp3, formarían un tetraedro con ángulos de 109,5º entre orbitales. - Tres orbitales híbridos formados por el orbital s y dos p. Estos orbitales se denominan orbitales sp2, se encuentran en el plano separados un ángulo de 120º. Quedaría un orbital p que sería perpendicular a los tres orbitales sp2. - Dos orbitales híbridos formados por el orbital s y un orbital p. Estos orbitales se denominan orbitales sp1, se encuentran en el plano separados un ángulo de 180º. Quedaría dos orbitales p que serían perpendiculares a los dos orbitales sp, y mutuamente perpendiculares entre sí. |
2 | QUIMICA DE LOS COMPUESTOS DEL CARBONO El átomo de carbono, debido a su configuración electrónica, presenta una importante capacidad de combinación. Los átomos de carbono pueden unirse entre sí formando estructuras complejas y enlazarse a átomos o grupos de átomos que confieren a las moléculas resultantes propiedades específicas. La enorme diversidad en los compuestos del carbono hace de su estudio químico una importante área del conocimiento puro y aplicado de la ciencia actual. Durante mucho tiempo la materia constitutiva de los seres vivos estuvo rodeada de no pocas incógnitas. Frente a la materia mineral presentaba, entre otras, una característica singular, su capacidad de combustión. Parecía como si los únicos productos capaces de arder hubieran de proceder de la materia viviente. En los albores de la química como ciencia se advirtió, además, que si bien la materia procedente de organismos vivos podía degradarse en materia mineral por combustión u otros procesos químicos,no era posible de ninguna manera llevar a cabo en el laboratorio el proceso inverso. Argumentos de este estilo llevaron a Berzelius, a comienzos del siglo XIX, a sugerir la existencia de dos tipos de materia en la naturaleza, la materia orgánica o materia propia de los seres vivos, y la materia inorgánica . Para justificar las diferencias entre ambas se admitió que la materia orgánica poseía una composición especial y que su formación era debida a la intervención de una influencia singular o «fuerza vital» exclusiva de los seres vivos y cuya manipulación no era posible en el laboratorio. La crisis de este planteamiento, denominado vitalismo, llevó consigo el rápido desarrollo de la química de la materia orgánica en los laboratorios, al margen de esa supuesta «fuerza vital». En la actualidad, superada ya la vieja clasificación de Berzelius, se denomina química orgánica a la química de los derivados del carbono e incluye el estudio de los compuestos en los que dicho elemento constituye una parte esencial, aunque muchos de ellos no tengan relación alguna con la materia viviente. | Los enlaces carbono-carbono, son enlaces de tipo covalente, que tienen lugar entre dos átomos de carbono. Existen enlaces simples, que generalmente son los más comunes, pues se encuentra formado por dos electrones, siendo cada uno de uno de los átomos que participan en el enlace. Los enlaces simples son de tipo sigma (enlace σ), siendo este el más fuerte de los enlaces covalentes, y se encuentran formados por un orbital híbrido de los átomos de carbono del enlace. |
3 | Ejemplo de enlaces químicos entre carbono C, hidrógeno H, y oxígeno O, representados según la estructura de Lewis. Los diagramas de punto representaron un intento temprano de describir los enlaces químicos, y aún son ampliamente usados hoy en día. | |
4 | El carbono tiene propiedades químicas que lo hacen muy importante para los seres vivos. Por ejemplo, puede unir sus átomos para formar largas cadenas que, a su vez, son los componentes básicos de las sustancias orgánicas, como el caso de las proteínas, las grasas y los azúcares. El carbono es tan importante que hay una rama de la química que se encarga de estudiar los compuestos de cadenas largas y cortas que forma este elemento: la química orgánica. Todas las biomoléculas se basan en los átomos de carbono para formar su estructura. | El carbono (C) tiene 4 electrones en la capa de valencia. Por tanto va a formar siempre 4 enlaces covalentes. Los enlaces pueden ser: simples, dobles y triples.El carbono puede unirse con otros carbonos formando de esta manera cadenas de compuestos carbonados. El hidrógeno solo tiene un electrón formando un enlace covalente simple. Los compuestos orgánicos se representan mediante una fórmula que puede ser empírica, molecular y estructural. |
5 | Los orgánicos se caracterizan porque en su composición interviene el carbono, además de otros elementos. Los compuestos en cuya composición no aparece este elemento se llaman inorgánicos. Hay algunas excepciones: por ejemplo, el dióxido de carbono (CO2) es un compuesto inorgánico, aunque en su composición aparezca el carbono. Los compuestos inorgánicos que están presentes en los seres vivos son el agua y las sales minerales. Los orgánicos son los carbohidratos, los lípidos, las proteínas y los ácidos nucleicos. Tanto las cosas como los seres vivos están formados por elementos químicos. Sin embargo, en los seres vivos la organización, la disposición y combinación de sus moléculas dan como resultado las propiedades y características por las cuales se manifiesta la vida | El enlace carbono-hidrógeno, representado por C-H, es un enlace covalente sencillo entre un átomo de carbono y otro de hidrógeno, que se encuentra sobre todo en compuestos orgánicos, en los que es muy abundante Un enlace carbono-carbono es un enlace covalente entre dos átomos de carbono.[1] La forma más común es el enlace simple - un enlace compuesto por dos electrones, uno de cada uno de los dos átomos. El enlace simple carbono-carbono es un enlace sigma y se forma entre un orbital híbrido de cada uno de los átomos de carbono Las ramificaciones son comunes en los esqueletos C-C. Pueden ser identificados átomos de carbono diferentes con respecto al número de otros átomos de carbono vecinos:
|
6 | El átomo de carbono constituye el elemento esencial de toda la química orgánica, y dado que las propiedades químicas de elementos y compuestos son consecuencia de las características electrónicas de sus átomos y de sus moléculas, es necesario considerar la configuración electrónica del átomo de carbono para poder comprender su singular comportamiento químico. Se trata del elemento de número atómico Z= 6. Por tal motivo su configuración electrónica en el estado fundamental o no excitado es 1 s ² 2 s ² 2 p ². La existencia de cuatro electrones en la última capa sugiere la posibilidad bien de ganar otros cuatro convirtiéndose en el ion C4- cuya configuración electrónica coincide con la del gas noble Ne, bien de perderlos pasando a ion C4+ de configuración electrónica idéntica a la del He. En realidad una pérdida o ganancia de un número tan elevado de electrones indica una dosis de energía elevada, y el átomo de carbono opta por compartir sus cuatro electrones externos con otros átomos mediante enlaces covalentes. Esa cuádruple posibilidad de enlace que presenta el átomo de carbono se denomina tetravalencia. | Los cuatro enlaces del carbono se orientan simétricamente en el espacio de modo que considerando su núcleo situado en el centro de un tetraedro, los enlaces están dirigidos a lo largo de las líneas que unen dicho punto con cada uno de sus vértices. La formación de enlaces covalentes puede explicarse, recurriendo al modelo atómico de la mecánica cuántica, como debida a la superposición de orbitales o nubes electrónicas correspondientes a dos átomos iguales o diferentes. Así, en la molécula de metano CH4(combustible gaseoso que constituye el principal componente del gas natural), los dos electrones internos del átomo de C, en su movimiento en torno al núcleo, dan lugar a una nube esférica que no participa en los fenómenos de enlace; es una nube pasiva . Sin embargo, los cuatro electrones externos de dicho átomo se mueven en el espacio formando una nube activa de cuatro lóbulos principales dirigidos hacia los vértices de un tetraedro y que pueden participar en la formación del enlace químico. Cuando las nubes electrónicas de los cuatro átomos de hidrógeno se acercan suficientemente al átomo de carbono, se superponen o solapan con los lóbulos componentes de su nube activa, dando lugar a esa situación favorable energéticamente que denominamos enlace. Todos los enlaces C —H en el metano tienen la misma longitud 1,06 Å (1 Å == 10-10 m) y forman entre, sí ángulos iguales de 109°. Tal situación define la geometría tetraédrica característica de los enlaces del carbono. La propiedad que presentan los átomos de carbono de unirse de forma muy estable no sólo con otros átomos,sino también entre sí a través de enlaces C — C, abre una enorme cantidad de posibilidades en la formación de moléculas de las más diversas geometrías, en forma de cadenas lineales,cadenas cíclicas o incluso redes cúbicas. Este es el secreto tanto de la diversidad de compuestos orgánicos como de su elevado número. |
Esterificación
Se denomina esterificación al proceso por el cual se sintetiza un éster. Un éster es un compuesto derivado formalmente de la reacción química entre un ácido carboxílico y un alcohol.
Comúnmente cuando se habla de ésteres se hace alusión a los ésteres de ácidos carboxílicos, substancias cuya estructura es R-COOR', donde R y R' son grupos alquilo. Sin embargo, se pueden formar en principio ésteres de prácticamente todos los oxácidos inorgánicos
EXPERIMENTO DE LA REACCION DE ESTERIFICACION
Material: Capsula de porcelana, agitador de vidrio, lámpara de alcohol, tripie, rejilla de alambre con asbesto.Sustancias: alcohol metanol, alcohol etanol, formol, acido acético o etanoico, acetona, acido sulfúrico.
Procedimiento:
Colocar en la capsula de porcelana una muestra (un mililitro) de cada sustancia, detectar sus propiedades organolépticas.
Colocar en la capsula de porcelana tres mililitros de acido acético y agregar tres mililitros de etanol, adicionar cinco gotas del acido sulfúrico (Con mucho cuidado), agitar y calentar la mezcla hasta ebullicon.Detectar el olor desprendido.
Observaciones:
sustancia | formula | olor | color | forma |
metanol | CH3OH | Un mal olor | Rosa/ café claro | |
etanol | CH3-CH2-OH, | Mal olor | Rosa | |
pentanol | C5H8 | Olor fuerte | Plata | |
acetona | CH3(CO)CH3 | Un mal olor | Plata | |
Mezcla acido y alcohol | H-COOH | Olor intenso por la exposición al fuego | Anaranjado se va cambiando a azul/café |
Conclusiones: Con este experimento pudimos observar los cambios de colores de las sustancias al exponerlas al fuego y sus olores que se presentaban, también vimos e hicimos las formulas de acuerdo a cada sustancia.
Marisol, Saludos, queda registrado el trabajo, le falto textos a las fotos, ver si se pueden corregir.Gracias.
ResponderEliminarProf. Agustin